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This article describes an approach I use when I teach difierential calculus of
several variables. It has the benefit of giving the students a single image from
which they can visualize any of the tools described in the title(the gradient, the
differential, the tangent plane, the directional derivative, the chain rule, and

partial derivatives) and see how to go from that visualization to the necessary

computations. Thus, they learn not only the geometric concepts in calculus
of several variables, but, they also lea,rn how to translate geometric ideas into
mathematical computations. I have had considerable succes.s with this method
with students of varying abilities. To avoid having to continually write "I then
tell them...", the rest of this article is mainly a summaxy of my lectures'

1 One Variable Derivatives
Hovr should we visualize the derivative of a firnction of one variable? That's
not hard - it's just a tangent line. How do we actually use this tangent line
for calculations? We use the slope of the tangent line to / at the point o to
estimate the value of / at another (close) point o * h.(See figure 1.)

Let's carefully focus on using l'@)h to approximate the increase (or de-

crease) in f as r changes from o to o * h. It's just the increase, as we go from
the origin to h, up the straight line with slope /'(o). (See figure 2.) But what
lousy notation! Should we use r or h for what is normally the r-a>ris, etc... So,

just forget the notation for now. We will get back to that later. Just focus on

the picture: l'@)h is simply how much you go up a straight line through the
origin - a straight line parallel to the tangent line to the firnction at (a, f(a))

- when you go over h units from the origin. We use f'(")h to approximate the
charrge in "f as we go from ata a* h: f (a+ h) x l@) + f'(")h.

Before we go on to discuss the generalization of this idea to two va,riables,



let's stop for a minute to discuss notation. It's importa.nt a.nd can be confusing'
Recall that if we just want the change in y as we change r from a to a ! h, we

use the approzimaiton f'(a)h, where h represents the change in r. Why don't
we just use standard notation for the change in r? Let's just call it Ar. Then
the approximatior is f'(a)Ar. Let's give this quantity a nlune. How about Ay?
No, that won't work. Thtt's because Ay is already used for something - the
actual change in y. So, let's use something close. Hovr abofi dy? Then we get

dy: ft(a)Lr. Now, that looks sloppy. Ok, let's use dz for Ar. Finally, we get

dy: f'(a)dr,

a very suggestive notation.

2 Two Variables
Now, instead of a curve, we have a surface and we want to approximate /(a *
h,b + k), assuming we zre ludry enough to have the right kind of information
about /. In one variable, we needed /(o) and the tangent line. Maybe that will
work here, if we have f (o,b) and the tangent plane. (See figure 3.) We should
approximate the change in / as though we were going up the ta,ngent plane,

from (a, b) to (a + h,b + k). That is,

f(a*h,b+k)x f(a,b)+

(distance up or down tangent plane when the rg-coordinate &anges
from (o,b) to (a +h,b+lc).

(See figu-re 3.)
If we had the equatioa of a parallel tangent plane through the origin, we

could solve for the change tn z n terms of h ard k, and we would be done. So,

we just need a normal vector to the tangent plane to our surface at (a,b, f(",b)).
To get the normal vector, we just need two vectors in the tangent plane. Then,
we can take their cross product to get the normal vector n. Getting these two
vectors isn't ha.rd.

2.L Getting Two Vectors in the Tangent Plane to a Sur-
face Given by z:f(xry)

Look at the firnction of one variable, g(r) : l@,b). Its tanget line is in the
tangent plane to the surface. (Look at figure 4.) -The slope is the slope of the
function f (r,b) at b. In other words, its just *(*,b), evaluated at a. Let's
call it f,(a,b). Then, if we go from (o,b) to (a +1,b), we go up this line,

f*{a,b) .1 : f,(a,b). I" the tangent plane, we are going from (o, b,l@,b)) to
(a * l,b, f (a,b) * f,(a,b) - 1). In other words, the vector (L,0, f,(a,b)) is in
the tangent plane. Doing the sarne thing in the y direction, we conclude that



(0,t, fr(a,b)) is in the tangent plane. Thus, a normal vector is (1,0, f*(a,b)) x
(0, L, fn(a, b)) : (- f ,(a, b), - !, (a, b), 1).

Recall that we wanted the equation of the plane through the origin, parrallel
to our tangent plane. Its equation is:

. n . (*,y, z) :0

OI

z: f*(a,b)r+ ln@,b)u.

Thus, the approximation to f (a + h,b + /c) that we are looking for is:

f(a + h,b + k) x f (a,b) * f"(a,b)h + fo@,b)k.

2.2 Important Notation and Other Matters
Let's look more closely at the estimate

f (a* h,b+ k) - f (",b) = f,(a,b)h+ fr(a,b)k.

We would like to catl it Lzbtrt, again, that's wrong. That's because Az
is already used for the exact change in the value of /, as we go from (a, b) to
(a * h,b + k) , whereas f "(a,b)h + fn(a, b)k is the change if the surface defined
by / were replaced by its tangent plane at (a,b, f(a,b)). Let's call this change

dz. We, then, might as well (as before) use dn for h and dg for ,t. And, since

this formula works at uV (a,b), we might as well just use (r,3r). Then, we get

the formula for the differential fo t,

dz : f,(r,U)dr * fo@,y)d,y.

The differential is a function of lour variables. It depends on the point where
we axe approximating with the tangent plane, (r,g), and the change, (d,fr,d,y).

Also, note that f*(r,y) is just the derivative of / as a function of r, with y
held fixed. Similarly, witb, fn(r,y).

3 Directional Derivatives
Suppose we are on the surface corresponding to f(n,y). What is the rate of
change of / (i.e., the drange 'n z), tf we move in some direc[ion? Here is the
idea.

It's simply hovr much z changes in the ta^ngent plane if we move hom (n,g)
to (n,y) + (h,lc), where l(h,lc)l : 1. It's the change in z per unit change

in the direction given by the vector (h,k). Since (h,k) is a unit vector, it is
(us(0),si,n(0)) , where d gives the direction. Thus, the directional derivative in
the direction d is given by



De I (a,b) : f,(o, b)cos(O) * fo@,b) sin(0)
: (f,(a, b) , fo(o, b)) . (cos(0) , sin(O))

: component po" p1,"inpll ( l,@, b), f o @, b)).

The value, (cornponent kos (0),si.n(0)) (f * 6, U1, I n @, b)) is the component of
(f,(o,b), fu@,b)) along the vector (cos(0),sin(0)).

Note that this directional derivative is a maximum when (cos(d), sin(0)) and
(f,(a,b1, fn@,b)) point in the same direction. Thus, the vector in the zy-plane
that points in the direction where the rate of change is greatest has the sarne

direction as (f,(a,b),fn@,b)). This is called the gradient of f at (a,6). Its
magnitude gives the maximum rate of cha.nge along the surface.

4 The Chain Rule
Suppose you moving along a path on the surface. The projection ofyou path
is a curve in the 4r-plane. Suppose you lanow the pa.rameterization in time of
the projection of your path, and, the function z : f(r,g) that defines your
surface. Can you compute how fast you are moving up and dovrn the surface,
that is, the rate of change 'an z, as you morre along the surface? Yes. If the curve
in the ry-plane is pa.rameterized by r(t): (r(t),g(t)), then, at time t,, if you
move along the tangent to the curve r(t) at r(t") for one unit of time, you will
move from (r(t"),g(t")) to (z(t"), a(t")) + r'(t"). (See figrue 5.) Thus, we only
need to apply the differential at r(r0)(: @(t",U(to)) : (no,go)) to the change

r/(r0)(: (r(t",y(ts)) : (no,ys)). Thus, the derivative of (/ o r)(t) is given by
the chain mle:

( f o r)t (t) : 1 *(r(t), s (t)) r' (t) + ls @ (t), a (t)) y' (t) .

(This is usually written suggestively as:

dz _ dzdr -dzdvdt - i|^r dt ' da dt'
A more complicated situation arises when the variables r and 3t are given

in terms of other variables s and t. That is, (*,y) : (r(s,t),y(s,t)) and we
want to find the partial derivatives of the composite function f (r(s,t),y(s,t))
with respect to the variables s and t. We can do this just as above when we
reabze that by fixing t at some to and letting s change, we axe moving along the
pa^ra,meterized curve (r(s,ts),y(s, t6)) and calculating the change in z when we
cha,nge s by one unit. For example,

(/ o r)'(s) : f,(r(s,to),g(s, ts))r"(s,10) * /r(r(s, to),a(s,te))3r,(s, ts).



5 Differentiability
Up to now, I have avoided addressing the fact that there a,re firnctions where

f* antd /, both exist, yet / is not differentiable. f6 finisfu this note, I will just
explain honr l addres this.

After giving an exa,rnple of such a function, I tell the students that what we
mean by differentiable in one variable is that there is a tangent line approxi-
mation where the relative error between the approximation and h goes to zero
as h goes to ze.ro. It is then easy for the.m to see that the sa,me idea is what is
needed in the case of two varirables.

Nonr, I'm ready to talk about limits ir two variable and then proceed in a
rather standard way to the other difierentiability topics covered in a course in
multivariable calculus.



Figure 1

(a+h,f(a)+f (a)h)

(a+h,f(a+h))

(a,f(a))

y=-(112x-2)-2

1.4 t-
2.5



Figure 2(a)

h (or x?)

Figure 2(b)



(a,b,f(a,b))

(a-r 1,b,f(a,b)+fla, b).1 )

tangent plane to surface

graph of f(x,b)

- 

Y=b

(a,b)

a+'1,b)

Figure 4(b)



Figure 1

y=-(112x-2)-2(a+h,f(a)+f (a)h)

(a+h,f(a+h))

(a,f(a))

1.4
2.5



Figure 2(a)

h (or x?)

Figure 2(b)

dY=f'(a)dx
y=f'(a)x (?)



(a,b,f(a,b))

(a+ 1 ,b,f(a,b)+fx(a, b).1 )

tangent plane to surface

graph of f(x,b)

(a,b)

a+1,b)

Figure 4(b)


